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Abstract. Water scarcity is quickly becoming one of the preeminent global concerns of the 21st century. 

More than one billion people will face water scarcity within the next ten years due to climate change and 

unsustainable water usage, and this number is only expected to grow exponentially as the years continue. 

At current water use rates, supply-side demand management is no longer an effective way to combat 

water scarcity. Instead, many municipalities and water agencies are looking to demand-side solutions to 

prevent major water loss. While changing conservation behavior is one demand-based strategy, there is a 

growing movement toward water conservation technology as a way to solve water resource depletion. 

Installing technology into one’s household comes with it an additional cost and motivation, creating a gap 

between the overall potential households that could adopt this technology, and how many actually adopt. 

It has been found that a variety of demographic, household, and external characteristics are the cause of 

this gap. Using agent-based modeling simulation and CART analysis, all of these factors were 

simultaneously evaluated for influence potential on household water conservation technology adoption. 

The results showed that water pricing structure and income growth most significantly impacted household 

adoption, leading the way for municipalities and other water agencies to more strategically price water to 

encourage household technology adoption.  
 

INTRODUCTION 
 

On a planet that supports the life of 7.4 billion people and over 8.7 million other species, water is 

absolutely crucial. While this is macro-level thinking, water is undeniably necessary. Despite this, a 

growing human population and consequences of climate change have created widespread water scarcity; 

and it is only expected to get worse in the coming decades. By 2025, more than one billion people will 

face absolute water scarcity, while around 400 million will be forced to endure economic water scarcity 

(Seckler, Barker, & Amarasinghe, 1999). Water scarcity is not only damaging to an individual’s quality 

of life, but it also negatively impacts entire food production systems, political and social stability, and 

ecosystem health (Postel, 2000). Currently, the agriculture and food system uses the most freshwater of 

any other industry. Irrigation systems in agriculture have allowed farmers to maintain food security 

among the growing food demand, helps reduce poverty, keep food prices low, and support health and 

nutrition (Rosegrant, Ringler & Zhu, 2009). However, as water resources become scarcer, so will the 

ability of irrigation to continue at the productivity and usage levels it currently demands. These irrigation 

systems have also shown to be highly inefficient, utilizing only between 10 and 30 percent of the water it 

brings in (Wallace, 2000). 
Not only food, but political and ecological systems can go awry without adequate water resources 

as well. Water stress can easily turn into regional competition over water, leading to conflict  As many as 

261 rivers border more than one different jurisdictions and regions without treaty or written agreement on 

how the water is to be distributed (Postel, 2000). If quality, quantity, or river flow changes in any way, it 

could create dire tensions between regions. Not only politically, but changes in water function can have a 

deep negative impact on water-based ecosystems as well (Naiman et al., 1995). Preserving natural 

habitats to flora and fauna are important to environmental and public health for all species. Water is an 

integral part of this system, causing extinction and environmental damage in periods of water scarcity 



(Postel, 2000). To solve these detrimental problems with water scarcity, researchers and policymakers 

have turned toward managing demand. 
Water scarcity is a problem on the rise due to the growing presence of climate change. Ocean 

circulation shifts, air and water pollution, ecosystem changes, increased natural disasters, and atmosphere 

erosion can all be traced back to burgeoning water resource loss. Climate change only adds further 

pressure on water resources, making the salvaging of water even more important for global climate. In 

order to reduce one’s water use, government officials and advocates have taken two different approaches: 

supply-side management and demand-side management. Supply-side management focuses more on 

increasing the availability of water through the development of more water infrastructure systems and 

obtaining new water sources (Kanta and Zechman, 2014). This encompasses the creation of reservoirs, 

water pumps, and irrigation systems to continue to have adequate water supplies. While supply-side has 

been effective historically, but they do nothing to change water use patterns of the consumer. Existing 

water supplies will not be adequate in bearing the burden of population and economic growth (Kanta and 

Zechman, 2014). Given the past sufficiency of supply-side management, a large portion in the field of 

water conservation management has been based on supply. Research began to focus on demand as climate 

change grew in awareness and impact, but academia is still lacking in demand-side management 

possibilities. This research project hopes to change this by conducting a comprehensive consumer study 

on demand-side water management. 
The fundamental philosophy behind demand-side management of water is that reducing a 

household’s demand for water will subsequently reduce water usage. While the idea of using demand-side 

management to monitor a typically inelastic good is controversial by economists and planners, it has been 

shown in many studies to be an effective component in alleviating water scarcity (Chen et al., 2005; 

White and Fane, 2002; Renwick and Green, 2000). At the framework, there are two main ways to reduce 

water demand: changing behavior or technology (Costanzo et al., 1986). Getting someone to change their 

behavior, according to De Young (1993), is a seven-step technique including incentives and disincentives, 

modeling of behaviors, education, and persuasive communication. Similarly, Cook and Berrenberg (1981) 

found that there are seven objective approaches to changing conservation behavior. These include 

appealing to one’s fear of climate change consequences, educating those who are already inclined to 

conserve, focusing on land preservation, and material and social incentives and disincentives (Cook and 

Berrenberg, 1981). These techniques work best with engaged audiences, and, in the end, are adopted 

infrequently (Cook and Berrenberg, 1981). Despite all of the multifaceted approaches, changing behavior 

tends to pan out only in the short term, as opposed to being a durable, long-lasting solution (Costanzo et 

al., 1986).  
Change in technology is meant to curb the problems with behavior conservation changes by 

erecting a more permanent fixture of conservation. In a large, extensive report of California’s water 

scarcity, Gleick et al. (2003) found that one-third of the state’s water usage could be saved with existing 

conservation technology. This total equates to more the 2.3 million acre-feet of water. As technology 

improves, as it has drastically since this report was written in 2003, water savings will only become more 

prominent. Governmental rebates have also become available to households who invest in water 

conservation technology, saving water and money on the household (Miami-Dade County, 2015). The 

effectiveness of water conservation technology is shown in many water use studies; however, the impact 

of rebates on household adoption still needs to be explored. The other demographic, household, and 

external factors are also diverse and can cause different adoption patterns. While changing technology can 

effectively help in mitigating water demand along with behavior conservation changes, the additional 

costs or potential savings it requires can be highly variable, as well as its influence from many other 

characteristics (Dolnicar and Shafer, 2006; Po et al., 2003; Baumann, 1983).  
While some factors that influence adoption of water conservation technology have been 

researched, there is a deficiency in the existing literature as to how these factors intersect and challenge 

conservation effectiveness. With water scarcity, climate change, and population growth, supply-side 

management is no longer the end all, be all solution. At some point, it will become too difficult to track 

down additional water sources, or there will simply be no more water left to find. Because of this, more 



research is needed on demand-side approaches. And although there are two parts to demand-side water 

management, change in technology will be the most permanent, applicable method heading into the 

coming decades. Change in behavior is typically ephemeral and requires more upfront time and energy in 

education and engagement. Since technology can be easily installed in one’s household or be built into 

new households, it does not necessitate as much acute environmental awareness and education as 

behavioral changes. Unfortunately, there are still barriers preventing household adoption of technology, 

including various demographic, household/building, and external characteristics. Cost, rebate potential, 

income, house age, and many others influence a household’s willingness to adopt water conservation 

technology. To mitigate water scarcity, understanding why, and to what extent households adopt 

conservation technology is crucial. 
 

BACKGROUND 
 

Imminent climate change impacts are forcing communities to consider ways to stop water 

supplies from completely diminishing within the next few generations. Conservation of water through 

demand-side management has become one of the most effective ways to prevent such water scarcity. 

Unfortunately, despite there being an immediate need for households to begin conserving, there is limited 

knowledge within the scientific community on the reasons people adopt water conservation practices in 

the first place. Conservation—and water conservation in particular—encompass both behavioral 

conservation as well as technical conservation. Because this scope of water conservation is so vast, this 

study will focus on technical conservation as a means of resolving problems with water scarcity. More 

specifically, we plan to examine principles affecting a household’s willingness to adopt water 

conservation technology. 
Most of the recent literature on demand-side conservation management and technology adoption 

incorporate some of the following features: public opinion/acceptance, cost, education/awareness, 

demographics, and conservation technology. In Table 1, below, shows a few of the studies on water 

management used for this review, and what features they implemented in their own research. 

 
Table 1. Recent research studies’ concentrations in urban water management 

Study Public 

Opinion 
Cost Education/Awareness Demographic Technology 

Baumann (1983) X X    

Chen et al. (2005)  X   X 

Corral-Verdugo, Bechtel, 

& Fraijo-Sing (2003) 
X  X X  

De Young (1993)   X   

Dolnicar and Shafer (2006) X X    

Domenech and Sauri 

(2010) 
X X   X 

Espey, Espey, and Shaw 

(1997) 
 X    

Lynne et al. (1995)  X   X 



Millock and Nauges (2010)  X  X X 

Olmstead and Stavins 

(2009) 
 X   X 

Perret and Stevens (2006) X   X X 

Renwick and Archibald 

(1998) 
 X   X 

White and Fane (2002)  X X  X 

Young (1973)  X    

 

The current studies on water management include some features that encompass water 

conservation technology, but none of them looked into all of the features simultaneously. In this 

explanation of literature, it can be understood that the recent studies in this field have contributed 

thoroughly to water management and understandings of household influence on water conservation 

technology. However, there is currently little to no research assessing all of these concepts at once. Their 

studies are limited by their lack of input from other features that could influence their result. 
 

Public Perception of Water Conservation 
 

Starting with public opinion, while it is understood that public’s acceptance of water 

conservation—and therefore adoption of water conservation technology—is integral to solving the current 

global water crisis, it is also highly variable (Dolnicar and Shafer, 2006; Po et al., 2003; Baumann, 1983). 

Additionally, the characteristics that are considered to influence potential installation of water 

conservation technology are still being researched. According to Po et al. (2003), cost is one of the largest 

deterrents or motivations of adopting water-saving technology. If a technology is inexpensive, a 

household will invest; if the technology is more costly, less households will be encouraged to install it. 

Income level—concurrent with cost—also plays a role in influencing public perception of water-saving 

technology (Young, 1973). More specifically, Lutzenhiser (1993) claims that there is more willingness to 

convert to water conservation technologies from higher class individuals. Those will less income, 

conversely, may simply struggle to afford any new technologies.  
 

Cost 
 

Directly reflecting cost and income, external factors of a household such as water pricing 

metering effects play a role in technology adoption (Espey, Espey, & Shaw, 1997). In fact, in a study of 

13 different California cities, it was found that price-based deterrents of water consumption deemed 

installing water-saving technology unnecessary with the right price-demand dynamic (Olmstead and 

Stavins, 2009). The price increases changed water conservation behavior without technology 

implementation. In that case, the higher the price of water, the less technology one would be able to 

adopt; therefore, the lower the price of water, the more technology one would willingly install. In 

contrast, however, Renwick and Archibald (1998) argue that the more demand-side management 

approaches used—such as government incentives and water pricing—regulation will lead to more 

technology due to wanting to sustain the cost-saving benefits of water conservation technology in the long 

run. While there are conflicting perspectives, it is clear that water prices and other external factors of 

water do have a potential effect on households adopting water conservation infrastructure. 



In a study of Florida strawberry farmers’ willingness to adopt water conservation technology in 

the 1990s, it was found that the farmers needed both perceived and actual control (Lynne et al., 1995). In 

this instance, government control and assistance was regarded as counterproductive; instead, it was 

suggested that farmers would be more likely to adopt water-saving infrastructure if there was a “mix of 

moral suasion” and simple, less complex government incentives (Lynne et al., 1995). This sentiment is 

echoed by many other researchers, who assert that government incentives cause more grief than 

environmental pay-off.  Stern et al. (1967) asserts that households avoid government programs due lack 

of accurate information, increased confusion, limited choices, too much time and effort necessary to 

install, lack of money, and invisibility of direct conservation effects. To solve this, the greater of a 

financial benefit a government entity or utility employs to encourage water-saving technology, the greater 

the non-financial benefits needed, such as marketing and education (Lutzenhiser, 1993).   
 

Education and Demographics 
 

This need to promote education and awareness just as much—if not more—than government 

financial incentives follows the same line of thought as many other researchers. Education, in a majority 

of the literature, correlates positively with public acceptance of water-conserving practices (Baumann, 

1983; Corral-Verdugo, Bechtel, & Fraijo-Sing, 2003; Po et al., 2003). The development of a greywater 

reuse program in Barcelona is attributed as a success due to its environmental awareness education 

(Domenech and Sauri, 2010). For water conservation in general, it has additionally been argued that the 

more knowledge a household has on how to conserve water—whether that be through behavior or 

technology—the more that household conserved water (Corral-Verdugo, Bechtel, & Fraijo-Sing, 2003). 

Along with education, researchers have found other demographics that influence a household’s 

willingness to adopt water conservation technology. For example, home ownership status is seen as a 

contributor to a household’s desire or willingness to install water efficient technology. Those who own 

their home are much more likely to consider long-term water conservation solutions such as technology 

(Perret and Stevens, 2007; Millock and Nauges, 2010). Gender is seen to also potentially make an impact; 

since men are commonly heads-of-households, they are more likely to make water conservation 

technology decisions (Perret and Stevens, 2007). 
 

Household Characteristics 
 

Regardless of who the head-of-household is, there are studies that show specific characteristics of 

a house itself reflect a particular willingness of the household to adopt water conservation infrastructure. 

Firstly, the age of a household can dictate how willing a person may be to install new technology (Mansur 

and Olmstead, 2012). The newer the home, the more likely it is to already have water-saving 

infrastructure (Mansur and Olmstead, 2012). The household size also influences public perception, for 

those who live in bigger homes may also expect greater the water costs and, thus, feel more obliged to 

invest in water- and cost-saving technology (Corral-Verdugo, Bechtel, & Fraijo-Sing, 2003). Installing 

water conservation infrastructure in land outside the home can also promote the reversal of water scarcity. 

For example, the amount of outdoor space—such as lawns or gardens—impacts a household’s 

willingness for more efficient water technology since much of household water usage goes to outdoor 

areas (Spulber and Sabbaghi, 2012). 
 

Significance 
 

Doing research on these water conservation technology adoption patterns are relevant because 

water scarcity is becoming a worldwide epidemic. There are two ways conservation can combat this 

problem: changing conservation behavior and changing conservation technology. Changing one’s 

conservation behavior requires one to actively and purposely use less water in their day-to-day lives. For 



example, taking shorter showers or doing laundry once a week instead of twice a week. While this 

method of conservation has made significant strides in water preservation, it is not the only piece of the 

puzzle (Gleick et al., 2003). More research is required on changes in conservation technology to 

understand the full potential of water conservation at the household level. Frankly, changing behavior is 

not enough. And furthermore, it is also much more difficult to implement. Changing conservation 

technology opens the doors to household water conservation that, in conjunction with conservation 

behavior changes, can potentially eliminate water scarcity altogether. As technology improves--as it does 

every day--there will need to be method or plan in implementing the technology into households of 

different demographics, household, and external factors. The households will be the agents adopting the 

technology; therefore, knowing their variability in adoption probability is the next big step in improving 

the status of drought and water scarcity.  
Other analyses of household conservation technology adoption that is also missing from current 

literature are what factors either encourage or prevent a household from adopting this technology. There 

has yet to be research done that can simultaneously and intersectionally analyze all the demographic, 

household, and external water pricing factors that could influence a household’s decision to improve the 

water conservation technology. Without this information, government agencies or nonprofit organizations 

will have no background or starting point in raising awareness of this technology. Random conservation 

measures will thus be grounded in no knowledge of household influences, making it mute. On a larger 

scale, if this research is not undergone and understood by policy-makers and the general public, the 

quality of life of most will drop considerably due to loss of water availability and no means of improving 

it. Focusing on these demographic, household, and external factors, all aspects of demand-side water 

management can be evaluated together to solve larger societal problems with water scarcity and climate 

change.  
 

METHODOLOGY 
 

To conduct this research, a simulation approach will be used. Simulation, which turns 

mathematical models into a series of inputs, can amass complex outputs for examining real-life scenarios 

(Law and Kelton, 1991). There are many ways that simulation can be applied, making it a diverse tool for 

analyzing physical and social systems. Simulation can be used to design and assess manufacturing, 

transportation, weapons, computer, financial and economic, communications, and land use systems (Law 

and Kelton, 1991). While deemed somewhat controversial or unorthodox, simulation is the best approach 

for merging the human and social components to water conservation systems.   
Davis et al. (2007) have outlined seven major steps to successfully execute agent-based modeling: 

form a research question, identify a simple theory, choose a simulation approach, create a computational 

representation, verify computational representation, experiment to build novel theory, and validate with 

empirical data. For this study, the seven steps were used as a guide.  
 

Form a research question  
 
Step one entails determining an engaging, theoretical research question. For the purposes of this study, the 

question asks, “What factors influence household willingness to adopt water conservation technologies?” 
 

Identify a simple theory  
 

To have a model, a theory must be addressed that overlays the research question. In this case, the 

theory is that a household’s willingness to adopt water conservation technology is influenced by other 

factors. More specifically, demographic, building, and external characteristics all play a role in whether or 

not a household adopts water conservation technology. As discussed in the Background, there have been 

many studies that analyze the influence of certain demographic, building, and external factors on water 



conservation technology adoption in isolation; however, theoretically, all of these attributes have the 

potential to influence an agent’s adoption utility simultaneously. More specifically, this means that 

income level, education, ownership status, house age, water pricing regimes for example, all influence a 

household concurrently. For this research project, the agent is rooted at the household level. While it may 

have been expected to utilize individuals as the agents, using people as agents requires a lot of granular 

data that is either not available or difficult to decipher in this type of model. Households will provide the 

needed information more efficiently and concretely. There are three types of household agents, each 

representing three adoption utilities, aptly named non-adopter, potential adopter, and adopter. Most of the 

characteristics can change and are fluid, thus changing its influence on a household. This is how the 

theory for this model is built. A visual representation can be accessed in Figure 1.  
 

 
Figure 1. Simple theory for simulation 
 

Choose a simulation approach 
 

Identifying an approach that fits with the logic and assumptions of the research question is the 

basis of this step. The chosen simulation approach for this study is agent-based modeling. Despite there 

being many ways to use simulation, an agent-based approach is best for this research because it is 

incredibly effective at simulating human systems, as well as incorporates applications in flow simulation, 

organizational simulation, market simulation, and diffusion simulation (Davis et al., 2007). Agent-based 

modeling has been incredibly successful in studying water management, especially demand-side 

management. Since agent-based modeling allows us to look at the micro-behaviors within the system of 

water conservation and project future actions, it is the best tool for this study. With surveys and 

interviews, for example, the data received would not be on actual actions taken in water conservation 

technology adoption. The results would be more hypothetical with “what if” scenarios rather than a direct 

action taken. For other objective approaches, this forward-reaching simulation would not be possible. 

 Additionally, surveys and other research tools can only reflect one particular population at a time, while 

agent-based modeling can replicate many different types of populations. Agent-based modeling has the 

capabilities to project diverse, tangible scenarios throughout future years. 



Agent-based modeling as a tool to analyze water management systems has been utilized and 

shown to be successful in the past. One such study was conducted by Athanasiadis et al. (2005). In this 

study, the researchers explored the consumer effect on water-pricing policies using agent-based modeling. 

The research measured the impact of five different water price policies, and assessed its durability and 

influence with specific econometric and environmental data. They accounted for peer effect and the water 

suppliers on consumer-level agents (Athanasiadis et al., 2005). The results concluded which of the five 

pricing policies measured garnered the most and least residential water demand. This research showed the 

potential of agent-based modeling for water management. As sustaining water resources is so prevalent, 

being able to analyze water policy has growing importance (Athanasiadis et al., 2005). While this study 

was crucial in understanding the connection between econometric and water policy, it differs from the 

current research project in that it does not account for many sociodemographic components. Additionally, 

the focus of Athanasiadis et al.’s (2005) study was on water management policies developed by water 

agencies and political regulators, whereas the focus of this current research is on household conservation 

practices.  
Another study that used agent-based modeling to simulate water use patterns focused on 

recreational home gardening (Syme et al, 2004). The researchers combined interview and external data to 

create a model that identifies the conservation possibilities of household gardens. Individual household 

gardeners were the agents, and they incorporated variables reflecting lifestyle, garden recreation and 

interest, conservation attitude, social desirability, and choice demographic factors including lawn size, 

income, and education. The breakdown of Syme et al. (2004)’s model parameters are shown in Table 3. 

As a result of their research, it was found that the demographic characteristics had the most influence on 

external water use. The attitudinal parameters also related to external water use; however, the interaction 

between the parameters had minimal impact (Syme et al., 2004). This study was important because it tied 

together how water is used in social situations. While water is commonly perceived as a simple utility, it 

is also important to realize how water is used leisurely. Various parameters used in these prior agent-

based modeling studies are below in Table 2.  
 
Table 2. Parameters in prior agent-based modeling studies (Athanasiadis et al., 2005; Syme et al., 2004) 

Parameter Use Method 

Water consumer Agent Estimation of consumption; influence diffusion 

Water supplier Agent Collection of consumption; total demand calculation; pricing 

policy review 

Meteorologist  Agent Environmental data input 

Home Gardener Agent Estimation of consumption and garden interest 

Econometric Model Input 

Parameter 
Influences water consumer agent 

Water Pricing Policy Input 

Parameter 
Influences water supplier agent 

Environmental Data Input 

Parameter 
Influences meteorologist agent 

Lifestyle Input 

Parameter 
Agents’ perceived importance of garden size, neighborhood 

park availability, green home environment; interview results 



Garden Recreation  Input 

Parameter 
Agents’ perceived importance of sharing garden with friends 

and family as leisure activity; interview results 

Garden Interest Input 

Parameter 
Agents’ perceived satisfaction and happiness from garden; 

interview results 

Conservation 

Attitude 
Input 

Parameter 
Agents’ perceived willingness to change water and gardening 

behaviors to conserve; interview results 

Social Desirability Input 

Parameter 
Agents’ perceived concern over water conservation; interview 

results 

Demographic 

Characteristics 
Input 

Parameter 
Methods of watering garden, ownership status, education, 

income, swimming pool ownership; interview results 

  
Agent-based modeling is a growing method of simulation research in the field of water 

management as a whole. Agent-based modeling is a growing method of simulation research in the field of 

water management as a whole. Besides water pricing and garden lifestyle models, social network effects 

of water conservation have been researched through modeling, as well as the effectiveness of financial 

rebates as incentive for conservation (Rixon, Moglia and Burn, 2002; Chu et al., 2009). Kanta and 

Zechman (2014) developed a model framework for assessing the consumer water demand behavior 

against different degrees of water supply and water supply systems. Their (2014) model incorporated both 

consumers and policy-makers as agents as they adapted their behaviors to different water supply systems 

and rainfall patterns. Studies such as these have set a precedent that agent-based modeling is a viable 

research tool for water use and management issues. Therefore it will be the most effective approach for 

establishing which factors affect a household’s willingness to convert to water-saving technologies. 
More specifically to the model on household water conservation technology adoption, the first 

step requires the abstraction of agents and their attributes. The agent is the main target of influence, and 

the model shows how the agents change over a designated period of time. Since this study focuses on 

information regarding water conservation technology at the household level, each household equals one 

agent. Based on the theory of innovation diffusion, in adopting new technologies, a population can be 

divided into three groups: non-adopters, potential adopters, and adopters. Non-adopters are individuals 

who do not consider adopting a new technology. In contrast, potential adopters are individuals who do 

consider adopting new technologies. Different demographic attributes such as awareness and education 

can influence whether an individual is a non-adopter or potential adopter. A potential adopter may 

become an adopter if the technology offer a utility that exceeds the cost of technology. Based on the 

similar premise, in this study, households were divided into three categories (i.e., non-adopters, potential 

adopter, and non-adopter) in terms of their position for water conservation technology adoption. The 

transition of households between these categories depend on their demographic attributes as well as water 

price and technology price factors. A household agent, based on its attributes, can transition from one 

state to another--from non-adopter to potential adopter and from potential adopter to adopter. These are 

the functions that ultimately influence an agent toward or against a particular output. The demographic 

attributes were combined into one input parameter, known as the adoption utility threshold. As the user 

increases the threshold, they thus increase the importance placed on the demographic and household 

characteristics. The coefficients for each attribute that makes up the utility threshold are in Table 3.  
 
Table 3. Input coefficients for utility threshold 

Variables Value Coefficient Distribution Type 



Education: 
·  High school or less 

·  Some college 
·  College graduate 
·  Advanced Degree 

If Yes=1, if No=0 
If Yes=1, if No=0 
If Yes=1, if No=0 
If Yes=1, if No=0 

1.92 
2.58 
2.91 
4.39 

Random 

Income 
·  Less than $40,000 
·  $40,000-$75000 
·  Above $75,000 

$ 0 
1.07 
1.58 

Uniform (25,000; 200,000) 

Home Ownership Owner=1, Renter=0 1.84 Random 

Head Gender Female=1, Male=0 1.21 Random 

Resident Age Years 1.01 Histogram 

House Size Square feet 1 Uniform (70; 56,000) 

Garden Size Square feet 1 Uniform (0; 8,000) 

House Age Years 0.99 Random (1,100) 

Household Size Numbers 0.98 Histogram 

 
All of these coefficients were abstracted from prior literature, namely Boyer et al. (2015), Brook 

and Smith (2001), Cahill (2010), and Chu et al. (2009). The equation below represents the combined 

utility value of all the coefficients.  

 
For example, a male high school graduate’s adoption utility, with no other demographics considered, 

would look like this: 1.92education * 1yes  + 1.21gender * 0male. If the utility value is greater than or equal to a user-

inputted utility threshold, it then triggers the transition from non-adopter to potential adopter.The 

threshold indicates a measure of sensitivity. The higher the threshold, the higher the demographic and 

household characteristics have to be in order to adopt (for example, a higher threshold would make it so, 

in terms of education, only those with an advanced degree would be willing to adopt). Conversely, the 

lower the threshold, the lower importance is granted to those factors. For this particular model, the lowest 

possible threshold is 70,000, while the maximum threshold is 200,000.  
 The utility threshold is important because it allows the model to simulate a variety of community 

profiles. Because The utility value and threshold are based on the demographic characteristics and 

importance of those characteristics, respectively, it is possible to explore communities that are based in 

the real world. Communities typically have demographic trends, whether it be regarding income, 

education, or even house size. Because of this, the threshold can pinpoint those trends to simulate these 

different community profiles.  
The mathematical model that triggers the transition from potential adopter to adopter is based on 

the Aspiration Level Theory, which states that when household aspiration levels are reached, they behave 

differently (Chu et al., 2009). Social surveys were conducted in a multitude of studies, and it was found 

that the ratio of water expenditure to income can be considered as the aspiration index (Brook and Smith, 

2001). This index is denoted in the following equation:  



Similar to the utility function, if the aspiration index is greater than the user-initiated aspiration threshold, 

then the household agent will transition from potential adopter to adopter. If it is less than the threshold, 

the agent will remain as a potential adopter. 

 
These transition equations make up the adoption utility and aspiration utility thresholds, which 

define the adoption state of each household agent. The theoretical framework of these transitions can be 

seen below in Figure 2.  

 

 
Figure 2. Theoretical framework for simulation approach 

 
In addition to the two thresholds, water price regime will also be incorporated into the model as 

an input parameter. Three different water pricing structures were assessed: fixed charge, volume use 

charge--block, and volume use charge--fixed.  Fixed charge is defined as a water price structure where 

every household is charged at a flat rate, regardless of how much water was used. A household that uses 

600 gallons of water in one payment cycle will pay the same amount as a household that uses 1800 

gallons of water. Not to be mistaken for volume use charge--fixed, which prices water per unit value. For 

example, each gallon of water used will cost the household $0.0044, so their water bill is dependent on 

how much water the household uses. Volume use charge--block is similar; however, instead of charging 

household consumers per unit of water, the block regime charges based on a set of ranges. This means 

that, for instance, every household spending between 0-172ghd will be charged the same amount, while 

every household spending between 172-393ghd will be charged a slightly higher amount, indicating 

higher use. Table 4 outlines how the three regimes were implemented into the model.  
 
Table 4. Input parameters for water price scenarios (Source: Cahill 2011) 

Scenario Attribute Input Coefficient 

1 Fixed Bill Charge $25.24 

2 Water Use Charge--Fixed Water Price $0.0044 

3 Block Price 1 
Demand: 0-172ghd* 

$0.0036 

Block Price 2 
Demand: 172-393ghd 

$0.0043 



Block Price 3 
Demand: >393ghd 

$0.0052 

*ghd = gallon/household/day 
 
 In this model, an agent was able to adopt six main types of water conservation technology as 

outputs: high efficiency toilets, shower heads, bathroom and kitchen faucets, washing machines (clothes), 

and dishwashers. Cahill (2011) did a study on the cost and efficiency of these technologies, which is 

documented below in Table 5. Also shown are the rebates that the City of Miami Beach offers for each of 

these technologies, which will be incorporated as an input parameter into the model. The user of the 

model can dictate whether or not the rebates will apply.  
 
Table 5. Cost and expected water savings of water conservation technology (Cahill, 2011) 

Technology Cost Rebate Expected Water Savings (gal/day/capita) 

Bathroom faucet $15 $15 0.57 (5%) 

Kitchen faucet $15 $15 2.8 (40%) 

Shower head $100 $25 4.85 (40%) 

Toilet $420 $50 1.63 (20%) 

Dishwasher $500 $150 0.35 (33%) 

Washing machine $670 $150 6.91 (45%) 

 
The expected water savings and cost of each technology is important to note since the agents 

adopted technology based on cost-effectiveness. In other words, cost-effectiveness expresses the idea that 

agents want to get the “best bang for their buck.” For example, while installing a more efficient bathroom 

faucet is relatively inexpensive, an agent could install a kitchen faucet for the same price and save much 

more water in the process. The rebates are important to the cost-effectiveness as well, since household 

agents will consider rebates and savings in the model.  
Income growth and household size growth were the last attribute input parameters for the model. 

All of these inputs--adoption utility threshold, aspiration index threshold, water price regime, rebate 

possibility/status, income growth, and household growth--will generate a number of outputs, which 

demonstrate the basis of simulation and agent-based modeling. The outputs provide are the percentage 

distribution of all of the adopter states, the overall water demand reduction, and the different types of 

technology adopted over the twenty year predetermined time period.  
 

Create a computational representation 
 

The creation of a computation representation for all of these input and output parameters entails 

constructing mathematical models and algorithms to match the theoretical logic representing the 

behaviors of households for adoption of water conservation. Anylogic 7.0 was utilized to create the 

computational agent-based model. This model incorporates only one agent, which is the household. There 

are almost 300 households used in the model, meaning that there are close to 300 agents. Before the 

model starts running, the user must provide the parameters for water price, government rebate, income 

growth, household size growth, utility threshold, and aspiration index threshold. The population of 

household agents are taken from Miami Beach, separated into three zip codes. The model then runs using 



Census data from these three zip codes, as well as individual household water use data provided by the 

City of Miami Beach. The census data includes information regarding median household income, 

education, average home ownership and average household size. Since some of the data provided by the 

census are only average values, a triangular average distribution was used to assign each household a 

random value. A uniform distribution was also used to assign the resident age, garden size, and house size 

in square feet. Values such as gender and home age are randomly assigned following no distribution. 

Moreover, data related to a household’s source of water such as the number of showerheads, toilets and 

faucets come from a custom distribution. Each household has a state chart with the following possible 

states: non-Adopter, potential adopter, and adopter. At the start of the model, all households are in the 

non-adopter state. A utility value is calculated from the household’s characteristics along with the 

coefficient for each demographic characteristic. If the utility value is greater than or equal to the user-

defined utility threshold, then the state of the household transitions to potential adopter. After a household 

is in the potential adopter state, it triggers a yearly event where it calculates the cost-effectiveness of each 

adoption action. For each adoption action, the model calculates the aspiration index. If the index is less 

than the user-defined aspiration index threshold, the household makes the decision to adopt that action. 

Thus, when the household adopts at least one action, it transitions to the adopter state. After twenty years, 

the model stops and provides the distribution of non-adopter, potential adopter, and adopter, as well as the 

number of actions adopted by each household and the overall demand reduction resulted from the 

adoptions. 
 

 



 
Figure 3. Unified modeling language (UML) diagram for the model 
 

Table 6 further explains the computational representation of the model by outlining which 

parameters were used, why they were incorporated, and how they were changed in the experimentation 

process to provide a diverse and all-encompassing series of outputs. 
 
Table 6. Parameters for model 

Parameter Use Method Input Unit Changes 

Household Agent Estimation of consumption; 

influence diffusion 
No change; 300 agents were used 

throughout the experimentation 

process 

Water Price 

Scenario 
Input 

Parameter 
Fixed cost; water use charge--

block; water use charge--fixed 
Nominal 

Rebate Status Input 

Parameter 
Rebate; No Rebate Nominal 

Income Growth Input Change in annual income -10% to 10% by one (-10%, -9%, 



Parameter -8%, -7%,... 10%) 

Household Size 

Growth 
Input 

Parameter 
Change in household size -10% to 10% by one (-10%, -9%, 

-8%, -7%,... 10%) 

Utility 

Threshold 
Input 

Parameter 
Accumulation of attributes 

influencing the potential for 

technology adoption 
(Utility > Threshold) 
 

70,000; 75,000; 80,000; 85,000; 

90,000; 95,000; 100,000 

Aspiration 

Index Threshold 
Input 

Parameter 
Household desire to adopt water 

conservation technology 
(Water Cost + Technology 

Cost…) 

0.15, 0.3, 0.5, 0.75, 1, 1.5, 2 

Percent Adopter Output 

Parameter 
Percentage of agents that 

adopted at least one water 

conservation technology 

Changes in the outputs are a 

reflection of changes in the input 

parameters 

Demand 

Reduction 
Output 

Parameter 
Gallons 

Kitchen Faucet Output 

Parameter 
Number of kitchen faucets 

adopted 

Bathroom 

Faucet 
Output 

Parameter 
Number of bathroom faucets 

adopted 

Shower head Output 

Parameter 
Number of shower heads 

adopted 

Toilet Output 

Parameter 
Number of toilets adopted 

Washing 

machine 

(clothes) 

Output 

Parameter 
Number of washing machines 

adopted 

Dishwasher Output 

Parameter 
Number of dishwashers adopted 

 
 Other logistical components that are required for the model to run properly are the geographical 

boundaries. This particular study will be based on 300 households in Miami Beach, Florida, 

encompassing three different zip codes. Based on Census data, each zip code portrays different 

demographic trends which can be accounted for in the model. General trends for each zip code is shown 

in Figure 3. All 300 agents will start out as non-adopters; and, depending on different influences, will 

transition to potential adopter or adopter. The reasoning for basing the model off of a real city is to gain 

better insight and accuracy in which trends affect household adoption of water conservation technology. 

While the model could have been made with randomly selected inputs not based in reality, utilizing real 

data helps to convey a better narrative about water technology adoption for future policy-making and 



regulation. This model will take place over the span of 25 years, so that trends can be analyzed over the 

course of many years. 
 

 
Figure 3.  Demographic Trends of  Zip Codes Used in Model (U.S. Census Bureau, 2010)*               
*Water use data provided by Miami-Dade County 
 

Verify computational representation 
 
Test strength of computational representation by replicating components of the simple theory to identify 

any possible errors within the theory or coding of the model. Verification can be as simple as taking the 

function of income and making sure it influences an agent to the degree that is specified in the model. 

Most errors that are discovered through verification have less to do with problems within the theory, and 

more regarding issues with coding correctly. Thus, most errors in the verification process can be fixed 

relatively quickly and smoothly.  
 

Experiment to build novel theory 
 

This stage requires developing an experimental design and assessing outputs with inputs based on 

constructs from the theory. For this study, that means actually going through and testing which 

characteristics--and to which extent--influenced the adoption utility in some way. Using scenario and 

trend analysis, each of the three water price scenarios were analyzed with different combinations of rebate 

status, income growth from -10% to 10%, household size growth from -10% to 10%, utility threshold 

from 70,000 to 100,000, and aspiration index threshold from 0.15 to 2. Evaluating and recording the 

results led to different outcomes of percent adopted, demand reduction, and technology adoption. An 

example of this process is in Table 7. Everything is kept constant except for one parameter to see how 

each impact the outputs. For the following example, income growth is the variable being altered.  
 



Table 7. Example of experimentation process 

Case 

Number 
Water Price 

Scenario 
Rebate 

Status 
Income 

Growth 
Household 

Size Growth 
Utility 

Threshold 
Aspiration 

Index 

Threshold 

0 Fixed 

Charge 
No 

Rebate 
0.00% 0.00% 70,000 0.15 

1 Fixed 

Charge 
No 

Rebate 
1.00% 0.00% 70,000 0.15 

2 Fixed 

Charge 
No 

Rebate 
2.00% 0.00% 70,000 0.15 

3 Fixed 

Charge 
No 

Rebate 
3.00% 0.00% 70,000 0.15 

4 Fixed 

Charge 
No 

Rebate 
4.00% 0.00% 70,000 0.15 

5 Fixed 

Charge 
No 

Rebate 
5.00% 0.00% 70,000 0.15 

 

 
From these results, a CART diagram was developed. This diagram breaks down all possible 

pathways of water conservation technology adoption based on all of the demographic, household, and 

external factors and thresholds. By examining the CART diagram, a household’s adoption status is 

quantitatively assessed based on the results from the model. 

 
Validate with empirical data 

 
Verification and validation of the ABM model was crucial for this study. In this study, verification was 

conducted through a gradual, systemic, and iterative process. Internal and external verification techniques 

focused on verifying the data, rules, logics, and computational algorithms (Bankes and Gillogly 1994). 

Various internal and external verifications techniques were employed to verify the data, logic, and 

computational algorithms related to the simulation models. The internal verification of the model was 

ensured through the use of the grounded theories of innovation diffusion and household technology 

adoption behaviors. For each component of the model, component validity assessment was conducted to 

verify the completeness, coherence, consistency and correctness of each component (Pace 2000). In 

addition, reliable data sources were obtained in creation of the model in order to ensure the credibility of 

the results. Household water use data was obtained from the City of Miami Beach and Census data was 

used for demographic attributes in the study region.  
  

RESULTS 
 
 Three different forms of analysis were used to formulate results from this model. The first was 

scenario analysis, where different animation components from the model are directly compared. 

Secondly, a trend analysis was conducted. Trend analysis allows for comparison of multiple scenarios at 

once via graphical trends. The trend analysis was used for visualizing how many people began adopting, 

as well as which technology they adopted. Lastly, a Classification and Regression Tree (CART) analysis 

was conducted. The CART analysis utilized the simulated results from various runs in order to create the 



scenario landscape and identify desired scenarios and pathways towards more water conservation 

technology adoption.  
 

Scenario and trend analyses 
 
 The scenario analysis is a comparison between different scenarios. In order to accurately compare 

scenarios equally across the analysis, a base case was created to act as a starting point that every other 

scenario is compared to. The base case for the fixed charge water price scenario incorporated the 

following parameters: 
 
Table 8. Base case scenario parameters 

Parameter Unit 

Water Price Scenario Fixed Charge 

Rebate Status No Rebate 

Income Growth 0.00% 

Household Growth 0.00% 

Utility Threshold 70,000 

Aspiration Index Threshold 0.15 

 
The model animation component of the base case is shown in Figure 4, below.  

 

  
Figure 4. Base case animation from the model 



 
This animation visually and graphically displays the outputs from the base case inputs. It shows 

the household state distribution, which reflects the adoption state of all of the agents; the household 

adopted actions display how many of each technology was adopted; the map, which geographically shows 

where the three hundred households are located in Miami Beach; total adopters, which displays the 

number of people who adopted; and the overall demand reduction, which shows how much the demand 

for water is reduced. In this base case model, 50% of households after 20 years remain non-adopters, with 

11.43% adopters. Among those who did adopt, kitchen, and bathroom faucets were the most common 

technologies adopted, while more expensive technology--toilet, washing machine, and dishwasher--were 

adopted less commonly. A total of 32 people adopted, reducing water demand by 470.35____.  
A total of 317 different scenarios were put through the model, reflecting changes in water price 

scenario, rebate status, income growth, household size growth, utility threshold, and aspiration index 

threshold. Of these parameters, certain trends regarding percent adopter were discerned, documented in 

Figure 5. For block charge and volume use--fixed, as income increased, there was a linear increase in 

percent adopted, no matter the rebate status. For regular fixed price, however, income growth led to an 

increase in percent adopter with a tipping point. The increase was linear from -10% to 0% income change, 

and then experienced a more exponential increase from 1% to 10% growth. The utility threshold also had 

a linear correlation; however, it was negative. As the threshold increased, percent adopter decreased, 

regardless of water price scenario or rebate status. 
 To further dissect the results, the number of technologies adopted were also accounted for in the 

model, and came out with some interesting trends. In Figure 6, it can be seen that there are similar trends 

to income growth over the water price scenarios. With fixed charge, there is an increasing tipping point of 

number of technology adopted with the increase in income growth, while the other price scenarios have a 

linear increase. What can be noted, however, is that across all of the water price and rebate regimes, 

income growth will lead to more adoption. Also, in the block charge and volume use--fixed price regimes, 

inexpensive technologies were adopted at the same rate as expensive technologies. If 100 inexpensive 

technologies were adopted, then 100 expensive technologies were adopted. 

Figure 5. Modeling trends on percent adopter 



 CART diagram analysis 

   
Figure 6. Modeling trends on number of income growth and technology adopted 
 
 The ultimate goal of simulation research is to evaluate different landscapes rather than produce 

point predictions. The results of ABM simulation model should be processed to generate the scenario 

landscape and to identify pathways towards desired outcomes. To this end, in this study, Classification 

and Regression Tree (CART) Analysis was used for explaining the impact of different attributes affecting 

water conservation technology adoption. CART is a nonparametric technique that can select, from among 

a large number of variables, the most important variables in determining the outcome variable to be 

explained and their interactions (Breiman et al. 1984). A regression tree is a tree-structured representation 

in which a regression model is fitted to the data in each partition. The CART analysis has two 

components: the predictor importance analyses and the regression tree. The predictor importance analysis 

distinguishes which parameters fostered the greatest significance to households for particular outputs. In 

Figure 7 below, the leftmost bar graph shows which parameters influenced household agents the most to 

adopt. As the results show, water price scenario, income growth, and utility threshold were the top three 

most important influences on percent adopter rates, in descending order. Aspiration index threshold, 

rebate status, and household size growth had little to no impact on percent adopter. This order of 

importance is consistent for the adoption of inexpensive technology as well as the adoption of expensive 

technology (middle and right graphs). In the graphs of technology adoption, though, it can be seen that 

although water price scenario is the most important factor, it is even more important for the adoption of 

expensive technology. Additionally, for all three, utility threshold--being the third most significant 

influencer--is only about half as important as income growth. The three least important factors, aspiration 

index threshold, rebate status, and household size growth. Have incredible low significance, not even 

making up half of the importance of the utility threshold.  
 



 

Figure 7. Parameter importance in terms of household water conservation technology adoption 
 

The importance predictors of each parameter engendered a CART tree diagram that explains all 

possible pathways toward or against household adoption of water conservation technology. The full 

results from the CART diagrams are available in the appendix, but Table 9 shows all the pathway results, 

or nodes, that yielded at least a 50 percent adopter rate over twenty years. 
 
Table 9. CART diagram results with >50% adopters 

Node 

 Number 
Water Price 

Scenario 
Income 

Growth 
Utility 

Threshold 
Aspiration Index 

Threshold 
Percent 

Adopter 

4 Fixed Price 1% < X < 

4.5% 
Any Any 62% 

8 Fixed Price <1% Any >0.225 50% 

10 Fixed Price >4.5% Any Any 68% 

6 Volume Use Charge-

-Block, Fixed 
1.5% < X < 

5.5% 
Any Any 64% 

14 Volume Use Charge-

-Block, Fixed 
5.5% < X < 

7.5% 
Any Any 67% 

28 Volume Use Charge-

-Block, Fixed 
7.5% < X < 

9.5% 
Any Any 70% 

46 Volume Use Charge-

-Block, Fixed 
>9.5% Any Any 72% 

35 Volume Use Charge-

-Block, Fixed 
<= -2% <= 72,500 Any 50% 

 



 As Table 10 shows, there are a variety of pathways that can lead to at least 50% of households 

adopting water conservation technology after twenty years. In the fixed price scenario, any income 

growth more than 1% will lead to a higher percentage of adopters, without even considering other factors. 

Even if there is less than 1% growth after twenty  years, households will still adopt at rates greater than 

50% as long as their aspiration index threshold is greater than 0.225. This shows great potential for water 

conservation adoption at the household level; however, based on the results, there is an even greater 

potential for households on a volume use charge--block or fixed scenario. While there is a greater income 

growth needed initially of 1.5% for the volume use charge regimes, the percentage of adopters is much 

greater. For example, income growth stops making an impact on the fixed price regime at 4.5%, garnering 

a maximum of 68% adopters. On the volume use scenarios, however, income growth can influence 

percent of adopters up to 9.5%, leading to a 72% adoption rate. Additionally, volume use regimes, unlike 

fixed price ones, can still lead to over 50% adoption when there is income decline. Income decline as 

much as -2% can still influence high percent adoption as long as the utility threshold is less than 72,500.  
This type of CART analysis was utilized for both inexpensive and expensive technology as well, 

which can be seen in Tables 10 and 11. The desired outcome in this case was an adoption number of over 

500 over twenty years. 
 
Table 10. CART diagram results for total number of inexpensive technology adopted  

Node 

 Number 
Water Price 

Scenario 
Income 

Growth 
Utility 

Threshold 
Aspiration 

Index Threshold 
Number of 

Technology 

Adopted 

4 Fixed Charge 1.5% > X 

> 3.5% 
Any Any 521 

10 Fixed Charge >3.5% Any Any 578 

6 Volume Use 

Charge--Block, 

Fixed 

1.5% > X 

> 4.5% 
Any Any 540 

27 Volume Use 

Charge--Block, 

Fixed 

4.5% > X 

> 7.5% 
Any Any 543 

 

28 Volume Use 

Charge--Block, 

Fixed 

7.5% > X 

> 9.5% 
Any Any 598 

46 Volume Use 

Charge--Block, 

Fixed 

>9.5 Any Any 605 

 
 For the number inexpensive technologies adopted, the water price scenario and income growth 

were, without a doubt, the most important influencers. In the fixed charge regime, any income growth 

above 1.5 percent led at least the desired 500 technologies adopted. The impact of income growth peeters 

off at 4.5%, however, whereas the impact of income continues to influence the number of inexpensive 

technology adopted for the volume use charge regimes up through 9.5% income growth. The maximum 

number of technology adopted for fixed charge is 578, and the maximum for the volume use regimes is 

605.  



 Similar patterns existed for the adoption of expensive technology. Under the fixed charge 

scenario, anything greater than a 2.5% income growth would lead to a maximum of 546 expensive 

technologies adopted. The volume use charge scenarios are influenced by greater income growth, 

however, accommodating greater than 9.5% income growth to accumulate a total of 605 expensive water 

conservation technologies adopted by households over twenty years.  
 
Table 11. CART diagram results for total number of expensive technology adopted  

Node 

 Number 
Water Price 

Scenario 
Income 

Growth 
Utility 

Threshold 
Aspiration 

Index Threshold 
Number of 

Technology 

Adopted 

4 Fixed Price >2.5% Any Any 546 

6 Volume Use 

Charge--Block, 

Fixed 

1.5% < X 

< 4.5% 
Any Any 540 

14 Volume Use 

Charge--Block, 

Fixed 

4.5% < X 

< 7.5% 
Any Any 562 

26 Volume Use 

Charge--Block, 

Fixed 

7.5% < X 

< 9.5% 
Any Any 591 

40 Volume Use 

Charge--Block, 

Fixed 

>9.5% Any Any 605 

 
DISCUSSION 

 
 The findings of this study have important implications for decision-makers. Firstly, the results 

showed that water price structure is the biggest influence on a household’s willingness to adopt water 

conservation behavior. This means that, if strategically implemented, the mere system of paying for water 

use can significantly increase the percentage of households that adopt water conservation technology. For 

example, with no regard to any other factors, 48% of households adopted water conservation technology 

under the volume use--block, fixed pricing scenarios, whereas only 22% of households adopted under a 

fixed price regime. The same trend exists for the number of technologies adopted as well, further 

indicating that municipalities and water agencies can use water pricing scenarios to strategically 

encourage the adoption of water conservation technology.  
 These results were effective in showing to what extent many demographic, household, and 

external water pricing factors affect a household’s willingness to adopt water conservation technology 

simultaneously. While the model fostered a unique way to evaluate water conservation technology 

patterns, there are past studies that, despite using a variety of different methods, found similar findings to 

the model. This, in turn, serves as a point of validation to the model’s results.  
 
Table 12. External validation of main research findings 

Findings External Validation 



Water price scenario most influences a 

household’s willingness to adopt water 

conservation technology 

“Pricing structure plays a significant role in influencing 

price responsiveness” (Espey, Espey, & Shaw, 1997).  

Income growth increases a household’s 

willingness to adopt water conservation 

technology 

“We have previously found financial variables to be 

important supplements to attitude measures in 

technology adoption modelling” (Lynne et al., 1995). 

Rebate status and household growth have 

 little influence on a household’s willingness 

to adopt water conservation technology 

“...rebate disbursement [is] inefficient for the utility” 

(Cahill, 2011). 

 
The impact of income growth opens up the narrative of price regime implementation. This can be 

explained using the CART analysis. For all three tree diagrams, income growth for volume use charge--

block and fixed continues to increase percent adopters and number of technologies up until 9.5%, whereas 

for the fixed price scenario, income growth only impacts water conservation technology adoption until 

income growth reaches 4.5% or less. After 4.5% income growth has been reached on a fixed price regime, 

other factors, such as utility or aspiration index thresholds must come into play in order to further increase 

water conservation technology percentages. This would suggest that, in assessing these results among 

different community profiles, volume use charge--block and fixed water pricing scenarios would be best 

implemented in more affluent communities where income growth is more frequent. Conversely, a fixed 

charge regime would be best suited for less affluent communities, where income growth is not as 

common. Although the utility and aspiration index thresholds do not play as large of a role in a 

household’s willingness to adopt water conservation technology as water price regime or income, they 

still affect adoption once income growth impact ceases.  
 On a broader scale, these findings show that the organizations and municipalities coordinating 

and enforcing different water pricing regimes are the greatest influencers in household water conservation 

technology adoption. If these agencies have the goal to increase a household’s adoption, they must closely 

consider which pricing regime will be the most successful in their particular community. This research 

shows that households are willing to adopt this technology under the right circumstances; however, it is 

left up to the number of organizations pricing water to create those successful circumstances. The 

planning and governance of water has a greater importance on household adoption of water conservation 

technology than any other demographic or household factor.  
 Another important finding is that the possibility of a rebate does very little to influence adoption. 

Rebates are an incentive-based tool used by municipalities and water agencies to subsidizing specific 

water-saving technology for the consumer. Despite being a popular tool, the results from the model show 

that they do not make any discernible impact on adoption percentage or number of technologies adopted. 

Because of this, municipalities may need to re-think their incentive programs and assess whether they are 

worthwhile. Household size growth also had very little impact on adoption, showing that a growing 

number of people in a household does not increase the household’s willingness to adopt water 

conservation technology. These results are important to consider in improving demand-side conservation 

management strategies. 
  

CONCLUSIONS 
 

As water scarcity comes to the forefront of global issues, demand-side management methods for 

conservation are increasingly necessary. Having run this model and CART analysis, there are now 

concrete designs for encouraging household water conservation technology adoption and implementation. 

This study contributes to the current body of research as a way to corroborate their findings, as shown 

above in Table 12. More so, though, the agent-based model and corresponding CART analysis provided a 



framework in which to not only assess specific demographic, household, and external factors of water 

conservation technology adoption, but to also evaluate all of these characteristics simultaneously. 

Households are complex agents that are not impacted by merely one factor at a time; households, and the 

people who reside in them, continuously change and diversify. Therefore, there was a need to provide an 

analysis of the many different elements that can influence household willingness to adopt water 

conservation technology. Furthermore, as water scarcity becomes more prominent among consequences 

of climate change, supply-side management methods are no longer effective. Because of that, research 

was needed into how demand-side management grow into a more efficient, larger movement in water 

saving.  
 While these findings will help municipalities and water agencies to strategically encourage the 

adoption household water conservation technology, they do pose some limitations. Unfortunately, not 

every demographic characteristic an individual can have could be accounted for, such as religious 

identity, race, sexual orientation, or even number of children in the household. That is not to say that all 

of these demographics would have had an impact on the utility value and household’s adoption state, but 

it could have fostered more inclusive results. These characteristics were not considered due to lacking 

pre-existing information or establishment in Census or water research. In the future, these identities will 

hopefully become more prominent in mainstream census and demographic research, which will allow for 

their inclusion in these demographic-based research models. Another important note about this model is 

that the only dynamic parameter was house age. Besides that one input attribute, all of the input 

parameters incorporated into the model were static, which is not quite representative of real-word 

changes. For example, it was not possible to have a fixed charge for ten years, and then switch to a 

volume use--block price for the remaining ten years of the model duration. While it is possible for 

government officials to change water pricing regime after a certain amount of time, these changes are not 

able to be evaluated in this model. Furthermore, it is important to note that while modeling is an effective 

simulation tool, agent-based modeling does not present real-life results. Nor, additionally, does it create 

predictions. Instead, modeling explores patterns that already exist.  
 Despite these limitations, this model presented valuable findings towards the future of water 

research as well as combating water scarcity and climate change. These results provide a clear course of 

action for future development of household water conservation technology adoption programs, and 

provide further evidence that demand-side management strategies will help foster a solution to urban 

water conservation problems.  
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APPENDIX 
 

I. Various results from the model with fixed price scenario 

Rebate 

Status 
Income 

Growth 
Household 

Size 

Growth 

Utility 

Threshold 
Aspiration 

Index 

Threshold 

Percent 

Adopter 
Inexpensive 

Technology 
Expensive 

Technology 

No 

Rebate 
0.00% 0.00% 70,000 0.15 11.43% 88 27 

No 

Rebate 
10.00% 0.00% 70,000 0.15 73.57% 618 618 

http://dx.doi.org/10.1006/jeem.1999.1102


No 

Rebate 
0.00% 0.00% 100,000 0.15 5.36% 40 13 

No 

Rebate 
0.00% 0.00% 70,000 2 49.29% 414 414 

Rebate 0.00% 0.00% 70,000 0.15 11.79% 95 44 

Rebate 10.00% 0.00% 70,000 0.15 71.07% 597 597 

Rebate 0.00% 0.00% 100,000 0.15 8.57% 71 50 

Rebate 0.00% 0.00% 70,000 2 50% 420 420 

 
II. Various results from the model with block price scenario 

Rebate 

Status 
Income 

Growth 
Household 

Size 

Growth  

Utility 

Threshold 
Aspiration 

Index 

Threshold 

Percent 

Adopter 
Inexpensive 

Technology 
Expensive 

Technology 

No 

Rebate 
0.00% 0.00% 70,000 0.15 50% 420 420 

No 

Rebate 
10.00% 0.00% 70,000 0.15 77.86% 654 654 

No 

Rebate 
0.00% 0.00% 100,000 0.15 15% 126 126 

No 

Rebate 
0.00% 0.00% 70,000 2 50.36% 423 423 

Rebate 0.00% 0.00% 70,000 0.15 53.21% 447 447 

Rebate 10.00% 0.00% 70,000 0.15 71.07% 597 597 

Rebate 0.00% 0.00% 100,000 0.15 21.43% 180 180 

Rebate 0.00% 0.00% 70,000 2 52.86% 444 444 

 
III. Various results from the model with volume use--fixed scenario 

Rebate 

Status 
Income 

Growth 
Household 

Size 

Growth 

Utility 

Threshold 
Aspiration 

Index 

Threshold 

Percent 

Adopter 
Inexpensive 

Technology 
Expensive 

Technology 

No 

Rebate 
0.00% 0.00% 70,000 0.15 52.5% 441 441 

No 

Rebate 
10.00% 0.00% 70,000 0.15 73.21% 615 615 



No 

Rebate 
0.00% 0.00% 100,000 0.15 19.29% 162 162 

No 

Rebate 
0.00% 0.00% 70,000 2 52.14% 438 438 

Rebate 0.00% 0.00% 70,000 0.15 52.5% 441 441 

Rebate 10.00% 0.00% 70,000 0.15 71.79% 603 603 

Rebate 0.00% 0.00% 100,000 0.15 19.29% 162 162 

Rebate 0.00% 0.00% 70,000 2 46.43% 390 390 

 

 

 

IV. CART diagram for percent adopter 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. CART diagram for inexpensive technology 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI. CART diagram for expensive technology 

 

 

 

 

 

 


