Monitoring to Support and Improve H/WQ Modeling Daren Harmel

"I don't trust models!"

"We have to use sound science!!"

"How can we get the biggest bang for our 'cleanup' buck??"

- Measured data...
 - stakeholders place more trust in
 - never have enough because it's expensive, timeconsuming, wrong scale, different conditions, etc.

Models...

- need measured data to give stakeholders confidence in predictions
- extremely valuable for simulating alternative practices, spatial relationships, various conditions, and future scenarios

Both are necessary, since neither provides all the information needed for H/WQ decision-making.

- So... should we rely on modeling or monitoring in water quality decision-making?? WRONG QUESTION!!
 - Right question is...How do we appropriately use modeling and monitoring in water quality decisionmaking??

- Typical decision is...
 - What is the best way to solve this water quality problem?
- This requires answering...
 - What are the important contributors to this problem?
 - What are the best practices to implement?
 - Where are the best locations to install these practices?
 - How can practice effectiveness be evaluated (postimplementation)?

Science-based options to answer these questions...

Science-based options	<u>cost</u>	<u>stakeholder trust</u>	<u>reliability</u>
monitor	high	high	moderate
model	moderate	low	moderate
professional judgement	low	low	low

- Most decisions can be made with a similar approach to adaptive management:
 - One, determine sources measured data, model, BPJ, and/or stakeholder input
 - Two, estimate contributions by various sources model

- Three, make conservative reductions for significant (and willing) sources - use models to optimize practice type and location.
- Four, determine if reductions produce desired effect
 measured data
- If necessary...
 - conduct research to better understand processes
 - improve model to better represent processes
 - make further reductions based on monitoring data, improved science

Any Questions??

Daren Harmel (254) 770-6521 daren.harmel@ars.usda.gov

Outline

Monitoring, modeling, decision-making

"How to" sample small watersheds -> data w/less uncertainty
H/WQ data uncertainty -> data with known uncertainty
Challenging to understand and model -> E. coli example data
MANAGE database -> more data

Small watershed sampling guidance

- Prior to this research, little published guidance was available to support design and operation of small watershed data collection.
 - Costs and difficulties often under-estimated
 - Projects characterized by inconsistent methods, missing data values, short-term data sets.

Small watershed sampling guidance

- Practical "how to" guidance
 - Small watershed, "edge-of-field"
 - Automated storm sampling

Project Objective: Achieve sampling goal(s) within financial, personnel, time, and watershed constraints

Products:

 Water quality data
 Measurement uncertainty

www.ars.usda.gov/spa/hydro-collection

Small watershed sampling guidance

- **Requires substantial resource commitment**
 - equipment purchase and maintenance
 - automated samplers needed
 - personnel (travel, work hours)
 - Iab analysis
- Constrained by QA/QC "Storm sampling" safety, timing Problems will occur

Successful projects balance project goals, data quality, sampling components. Collection of high quality data requires a great deal of time, \$\$, commitment.

- The fact that all data are uncertain is typically ignored.
 Why?? Until recently...
 - An adequate understanding of H/WQ measurement uncertainty had not been established.
 - No complete uncertainty (error propagation) analysis had been conducted on measured H/WQ data.
 - No easy-to-use tool was available to assist with uncertainty estimation in H/WQ.

"Should it not be required that every... (field and modeling study)... attempt to evaluate the uncertainty in the results?" Beven (2006)

- discharge measurement individual Q's, stage-discharge relation, channel conditions
- sample collection EWI vs. grab vs. automated, sampling frequency, location in x-section, discrete vs. composite
- sample preservation/storage pre-processing, preservation, storage duration and conditions
- laboratory analysis reagents, standards, method, instrument, best fit curve
 - data processing and management mistakes, missing data

"The use of uncertainty estimation... (should be)... routine in hydrological and hydraulic science." Pappenberger, Beven (2006)

- **Developed uncertainty estimation framework (2006)** focused on Q, TSS, N, and P data for small watersheds Isted published uncertainty estimates in 4 categories discharge, sample collection, preservation/storage, analysis analyzed "data quality" scenarios (best, typical, worst) compared uncertainty introduced by each procedural category
 - calculated cumulative uncertainty in resulting data

 Enhanced uncertainty estimation framework to make more user-friendly (2009)

 added "data processing and management" procedural category

DUET-H/WQ - LookUp Table for calculation of uncertainty in discharge measurement

Select the published value for each step or source of uncertainty Individual discharge measurement Uncertainty Reference Direct - area-velocity method - poor conditions Sauer and Meyer (1992) ±20% Direct - area-velocity method - average conditions Sauer and Meyer (1992) ±6% Direct - area-velocity method - ideal conditions Sauer and Meyer (1992) ±2% Direct - area-velocity method - ideal conditions Boning (1992) ±2% Direct - area-velocity method - ideal conditions (0.2,0.8d velocity) +6.1%Pelletier (1988) Direct - area-velocity method - ideal conditions (0.6d velocity) ±8.5% Pelletier (1988) Manning's equation - Stable, uniform channel; surveyed reach and cross-section; accurate "n" estimate $\pm 15\%$ Slade (2004) Manning's equation - Unstable, irregular channel; surveyed reach and cross-section; poor "n" estimate ±35% Slade (2004) Direct - area-velocity method Tillary et al. (2006) ±5% to ±15% (average ±9.3%) % + (Click to change) Continuous discharge measurement Pre-calibrated flow control structure (properly designed and installed) with periodic meter checks ±5% to ±8% Slade (2004) Pre-calibrated flow control structure (properly designed and installed) ±5% to ±10% Slade (2004) Stable channel with stable control, 8-12 stage-discharge measurements per year ±10% Slade (2004) Shifting channel, 8-12 stage-discharge measurements per year +20%Slade (2004) Natural channel, ideal conditions ±6% Boning (1992) Instream velocity meter N/A ----OTHER -N/A ----± % (Click to change) Continuous stage measurement Float recorder ±2% Cooper (2005), unpublished data Hershey (1975) Float recorder ±3 mm KPSI series 173 pressure transducer ±0.1%, ±0.022% thermal error KPSI (2005) ISCO 730 bubbler flow module ±0.035 ft ±0.0003 * ft * temp. change from 72 deg. F Teledyne ISCO (2005) Campbell Scientific SR50-L ultrasonic distance sensor Larger of ±1 cm or 0.4% of distance to water surface Campbell Scientific (2003) OTHER -N/A % + (Click to change) Effect of streambed condition Stable, firm bed +0% Sauer and Meyer (1992) Sauer and Meyer (1992) Mobile, unstable bed ±10% OTHER -N/A ± % (Click to change) Cancel

THE AVER DECEMBER OF A PARTY OF

File Calculate Uncertainty Estimation root for Hydrology and Water Quarty (DOET-H/WQ)							
	Site_ID	Date_Time	discharge_(ft3/s)	Uncertainty(±%)	conc_NO3N_mg/l	Uncertainty(±%)	-
▶ 00001	Wild Cr	3/12/2007 11:30	0.0	50	1	42	Ξ
00002	Wild Cr	3/12/2007 11:45	0.9	10	1	42	
00003	Wild Cr	3/12/2007 12:00	14.9	23	1	42	
00004	Wild Cr	3/12/2007 12:15	15.3	23	1	42	-
00005	Wild Cr	3/12/2007 12:30	15.8	23	1	42	
00006	Wild Cr	3/12/2007 12:45	15.5	23	1	42	
00007	Wild Cr	3/12/2007 13:00	15.3	23	1	42	-
00008	Wild Cr	3/12/2007 13:15	14.3	23	1	42	
00009	Wild Cr	3/12/2007 13:30	13.9	23	1	42	
00010	Wild Cr	3/12/2007 13:45	13.3	23	1	42	-
00011	Wild Cr	3/12/2007 14:00	12.6	23	1	42	
00012	Wild Cr	3/12/2007 14:15	12.2	23	1	42	
00013	Wild Cr	3/12/2007 14:30	11.6	23	1	42	
00014	Wild Cr	3/12/2007 14:45	11.1	23	1	42	_
00015	Wild Cr	3/12/2007 15:00	10.4	23	1	42	
00016	Wild Cr	3/12/2007 15:15	10.2	23	1	42	
00017	Wild Cr	3/12/2007 15:30	9.7	10	1	42	
00018	Wild Cr	3/12/2007 15:45	9.5	10	1	42	
00019	Wild Cr	3/12/2007 16:00	9.0	10	1	42	_
00020	Wild Cr	3/12/2007 16:15	8.9	10	1	42	-
00021	Wild Cr	3/12/2007 16:30	8.5	10	1	42	
00022	Wild Cr	3/12/2007 16:45	8.2	10	1	42	-
•	1	3	III	1			

578 Lines loaded from C:\Users\dharmel\Documents\levenable\macaulay\software\example DUET-HWQ file completed.txt.

Developed 1st uncertainty estimation framework for HWQ

$$EP = \frac{E_{Q}^{2} + E_{C}^{2}}{E_{Q}^{2} + E_{C}^{2}} + E_{PS}^{2} + E_{A}^{2} + E_{DPM}^{2}$$

Produced 1st comprehensive uncertainty analysis for H/WQ

- Led effort to emphasize importance of considering uncertainty in...
 - Model evaluation
 - Monitoring
 - Data reporting
 - Policy/regulation

$$e(meas + pred)_i = CF(meas + pred)_i \times (O_i - P_i)$$

Conclusions

The ramifications of decisions based on these data are too great to continue to ignore uncertainty!!!

Uncertainty increases dramatically without QA/QC.

QA/QC should include uncertainty estimation, reporting to increase data "value".

E. coli runoff example

- Measure E. coli at edge-of-field and in small streams
 - understand management/land use impacts
 - evaluate potential sources
 - inform WQS process

Native prairie, Mixed, Cultivated, Hay pasture, Grazed pasture????

E. coli runoff example

- Still understand very little about E. coli fate and transport
 - large variability
 - counterintuitive results
 - very difficult to model

MANAGE database

- Data from "all" studies with measured N, P runoff
 - Agricultural (67 studies)
 - Forest (30 studies)

Treatment	Total N	Diss. N	Part. N
	(kg/ha)	(kg/ha)	(kg/ha)
Land use			
Corn	18.70	3.02	7.27
Cotton	7.88	2.47	9.13
Sorghum	3.02	0.30	-
Peanuts	-	-	-
Soybeans	-	2.70	21.9
Oats/Wheat	6.61	1.31	5.90
Fallow Cultivated	3.00	0.90	2.70
Pasture	0.97	0.32	0.62
Various Rotations	3.68	3.12	1.36

MANAGE database

- Recent additions include:
 - Drainage (91 studies)

MANAGE database

- Recent additions include:
 - Additional management info

Use all available "hard" & "soft" data to calibrate, constrain, evaluate HWQ models.